To this solution was added with stirring tert-butyl hydroperoxide (0.015 mole) over 30 min. To the solution was then added aqueous ammonia to pH 7-9, and the mixture extracted five times with chloroform. Unreacted base was removed by steam distillation.

The reaction products (III) and a mixture of (V) and (VI) were purified by column chromatography (alumina, hexane-chloroform, 3:1). The purity of isomers (V) and (VI) was established by TLC (adsorbent Silpearl, chloroform).

(Quinoxalin-2-y1)-18-crown-6 (III). PMR spectrum: 3.40-3.70 (22H, m, CH₂O), 5.30-5.40 (1H, m, OCH-Ar), 7.50-8.00 (4H, m, Ar), 8.78 ppm (1H, s, Ar).

(Quinolin-4-y1)-18-crown-6 (V). PMR spectrum: 3.40-3.71 (22H, m, CH₂O), 5.20-5.38 (1H, m, O-CH-Ar), 7.20-8.11 (5H, m, Ar), 8.82 ppm (1H, d, 2-H, Ar).

(<u>Quinolin-2-y1)-18-crown-6 (VI)</u>. PMR spectrum: 3.42-3.71 (22H, m, CH₂O), 5.32-5.40 (1H, m, O-CH-Ar), 7.20-8.10 ppm (6H, m, Ar).

The elemental analyses of (III), (V), and (VI) were in agreement with the calculated values.

LITERATURE CITED

- 1. Yu. B. Zelechonok, V. V. Zorin, S. S. Zlotskii, and D. L. Rakhmankulov, Khim. Geterotsikl. Soedin., No. 9, 1265 (1985).
- W. Burratti, G. P. Gardini, F. Minisci, F. Bertini, R. Galli, and M. Perchinuno, Tetrahedron, <u>27</u>, 3655 (1971).

REDUCTION OF QUINOLINECARBOXYLIC ACIDS BY RANEY ALLOY

I. N. Gracheva and A. I. Tochilkin

UDC 547.831.7.07:542.942:543.422.25

The heterocyclic nucleus in quinolinecarboxylic acids is reduced by Raney alloy (nickel-aluminium) in alkaline media to give 1,2,3,4-tetrahydro-2-,3-,4-,5-,6-, and 8-quinolinecarboxylic acids and 8-methyl-5-quinolinecarboxylic acid and their ethyl esters.

1,2,3,4-Tetrahydroquinolinecarboxylic acids are used in the synthesis of biologically active compounds [1, 2].

The choice of methods for the preparation of 1,2,3,4-tetrahydroquinolinecarboxylic acids is limited, and more often than not reduces to reduction of the heterocyclic ring in quinolinecarboxylic acids with tin in hydrochloric acid [3], zinc in formic acid [4], sodium in butanol [4], a mixture of formic acid and triethylammonium formate (giving the N-formyl derivatives of the acids) [4], or by catalytic hydrogenation in the presence of Adams catalyst [2, 4]. These methods have technical limitations (the use of platinum catalysts, high pressures and temperatures), and do not always give high yields, prompting a search for new modes of reduction of the heterocyclic ring.

We have found that good results are obtained by reducing 2-, 3-, 4-, 5-, 6-, and 8quinolinecarboxylic acids and 8-methyl-5-quinolinecarboxylic acid (Ia-g) with nickel-aluminum alloy (Raney alloy). This reagent, which is usually used to reduce and hydrogenolyze heteroaromatic substituents [5], has been employed to a limited extent to convert naphthalenes into tetralins, including tetrahydronaphthoic acids [6].

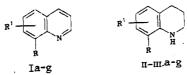
Reduction of quinolines with Raney alloy has not hitherto been reported.

Treatment of the quinolinecarboxylic acids (Ia-g) with Raney alloy in 10% aqueous sodium hydroxide at 20°C proceeds readily to give high yields of the 1,2,3,4-tetrahydroquinoline-

Institute of Biological and Medical Chemistry, Academy of Medical Sciences of the USSR, Moscow 119121. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 77-79, January, 1988. Original article submitted July 14, 1986.

TABLE 1. Properties of (IIa-f) and (IIIa-c)

Com-	mp, °C, or bp, °C (mm)			Yield,
pound	our data	literature data	IR spectrum, cm ⁻¹	%
IIa Hb IIC	219—220 141—142 96—98	219-221 [8] 145-146 [8] Not isolated in the free state	1745 (CO), 3445 (NH) 1747 (CO), 3445 (NH) 1736 (CO), 3445 (NH)	97 78 87
IId IIe IIf IIIa IIIb IIIc	165—166 168—170 159—161 140 (5) 142 (5) 160 (5)	[8] 146—147 [8] 170 [8] 161—163 [8] 131 (1,5) [4] 135—137 (1,5) [4] 176 (13) [4]	1748 (CO), 3445 (NH) 1740 (CO), 3445 (NH) 1736 (CO), 3445 (NH) 1736 (CO), 3445 (NH) 1736 (CO), 3438 (NH) 1736 (CO), 3448 (NH) 1736 (CO), 3435 (NH)	75 67 70 82 97 70


TABLE 2. Properties of (IIg) and (IIId-g)

Com- pound	mp. °C, or bp, °C (mm)	IR spectrum, cm ⁻¹	, ,			Empirical	Calculated,		Yield. %	
			с	н	N	formula	с	н	N	
IIg	130—132 aqueous ethanol	1717 (CO), 3457 (NH)	69,1	6.7	7,1	C11H13NO2	69,0	6,9	7,3	72
IIIa	99-100	1727 (CO);	70,3	7,3	6,7	C ₁₂ H ₁₅ NO ₂	70,2	7,4	6,8	50
IIIe	(5) 82—83 hexane	3438 (NH) 1687 (CO); 3437 (NH)	70,5	7,6	6,5	C ₁₂ H ₁₅ NO ₂	70,2	7,4	6,8	97
IIIf	97—99	1687 (CO); 3418 (NH)	70,1	7,5	6,6	C ₁₂ H ₁₅ NO ₂	70,2	7,4	6,8	74
Шg	(5) viscous oil	1680 (CO); 3435 (NH)	70,6	6,9	6,8	C ₁₃ H ₁₇ NO ₂	70,7	7,6	6,0	48

TABLE 3. PMR Spectra of (IIIa-f)

		s, ppm	· · · · · · · · · · · · · · · · · · ·			
Com- pound	2-H	3-Н	4-H	OCH₂	CH₃(t)	aromatic ring (m)
III a IIIb IIIc IIId IIIe IIIf	3,85-4,1 m 4,05-4,3 m 3,32-3,64 m 3,2-3,32 t 3,26-3,38 t 3,32-3,46 t	3,23,6 m 2,96 s	3,2-3,38 m 2,91-3,09 q 2,64-2,82 t	4,05-4,25 q 4,15-4,25 q 4,15-4,4 q 4,12-4,38 q	$\begin{array}{c} 1,25-1,38\\ 1,22-1,31\\ 1,3-1,35\\ 1,2-1,42\\ 1,22-1,38\\ 1,2-1,4\end{array}$	$\begin{array}{c} 6,45-7,2\\ 6,4-7,9\\ 6,3-7,1\\ 6,45-7,2\\ 6,78-7,62\\ 6,34-7,74\end{array}$

carboxylic acids (IIa-g) (Table 1).

I--III a - f R=H, g R=CH₃; I, II a R¹=2-COOH, b R¹=3-COOH, c R¹=4-COOH, d', g R¹=5-COOH, e R¹=6-COOH, f R¹=8-COOH; III a R¹=2-COOC₂H₅, b R¹= =3-COOC₂H₅, c R¹=4-COOC₂H₅, d, g R¹=5-COOC₂H₅, e R¹=6-COOC₂H₅, f R¹=COOC₂H₅

The ethyl esters of these acids (IIIa-g) are obtained readily by the method described in [7], involving esterification of acids(IIa-g) with ethanol in the presence of sulfuric acid and hydrogen peroxide. The acid (IIg) and the substituted ethoxycarbonyl compounds (IIId-g) have not previously been reported (Tables 1-3). The structures of these compounds are shown unambiguously by their IR and PMR spectra.

EXPERIMENTAL

PMR spectra were obtained on a Varian XL-100 (in $CDCl_3$), internal standard TMS, and IR spectra on a Unicam SP-1000 (in KCl disks). The course of the reactions and the purities of the products were checked by TLC on Silufol plates in the solvent system benzene-ethyl acetate-water, 100:50:1. The quinoline-2 and -4-carboxylic acids used were obtained from

Reanal, and 3-, 5-, 6-, and 8-quinolinecarboxylic acids and 8-methyl-5-quinolinecarboxylic acid were prepared by literature methods. The properties of (IIa-g) and (IIIa-g) are given in Tables 1-3.

<u>1,2,3,4-Tetrahydroquinolinecarboxylic Acids (IIa-g)</u>. To a solution of 0.05 mole of the acid (Ia-g) in 50 ml of 10% aqueous sodium hydroxide was added in small portions with stirring over 1 h, 8 g of Raney alloy, and the mixture stirred for 1 h at 20°C. The solid was filtered off and washed with hot water, and 5% hydrogen chloride in ethanol added to the filtrate to pH 2-3 (universal indicator). It was then extracted with chloroform, the organic layer dried over magnesium sulfate, and the solvent removed to give the acids (IIa-g), which were crystallized from aqueous ethanol for analysis. The compounds were homogeneous on TLC. The acids (IIa-g) were used without purification to obtain the esters (IIIa-g).

Ethyl Esters of 1,2,3,4-Tetrahydroquinolinecarboxylic Acids (IIIa-g). A solution of 0.02 mole of the acid (IIa-g) in a mixture of 10 ml of absolute ethanol, 5 ml of conc. sulfuric acid, and 3 ml of 30% hydrogen peroxide was heated at 120°C (in a bath) for 30-40 min. The mixture was then poured into 50 ml of water, 25% ammonia added to pH 6-7, extracted with chloroform, and the organic layer washed with 3% sodium bicarbonate and water, dried over magnesium sulfate, and the solvent removed to give the ethyl esters (IIIa-g).

LITERATURE CITED

- 1. G. P. Zecchini and M. P. Paradisi, J. Heterocycl. Chem., <u>16</u>, 1589 (1979).
- 2. G. M. Coppola, J. Heterocycl. Chem., <u>15</u>, 645 (1978).
- 3. J. Tafel, Chem. Ber., 27, 825 (1894).
- 4. O. Kocian and M. Ferles, Coll. Czech. Chem. Commun., 43, 1413 (1978).
- 5. L. Fieser and M. Fieser, Reagents for Organic Synthesis [Russian translation], Mir, Moscow (1970), Vol. 2, p. 435.
- 6. D. Papa, E. Schwenk, and H. Breiger, J. Org. Chem., <u>14</u>, 366 (1949).
- 7. S. Togashi and H. Yamada, US Pat. No. 3 322 772; Chem. Abstr., <u>71</u>, 101337 (1967).
- 8. J. Heilbron and H. M. Bunbury, Dictionary of Organic Compounds, 3, 581 (1946).

DUAL REACTIVITY IN 1,2-DISUBSTITUTED DIHYDRO-N-HETEROAROMATIC SYSTEMS.

12.* AROMATIZATION OF 1-SUBSTITUTED-2-(INDOL-3-YL)-1,2-

DIHYDROQUINOLINES WITH 1,3,5-TRINITROBENZENE

A. K. Sheinkman, T. S. Chmilenko, and T. N. Nezdiiminoga UDC 547.546'759.2'832.5'543.87

As the electron-acceptor properties of the N-substituents in 1-R-2-(indol-3yl)-1,2-dihydroquinolines decrease, their ability to undergo heterolysis of the internuclear C-C bond to give ion pairs of 1-R-quinolinium cations and indole anions decreases. Reaction of these ion pairs with 1,3,5-trinitrobenzene gives salts of 1-R-quinolinium cations and the 1-(indol-3-yl)-2,4,6-trinitrocyclohexadiene anion. With undissociated dihydroquinolines, aromatization under similar conditions gives salts of 1-R-2(indol-3-yl)quinolinium cations and the 1,1-dihydro-2,4,6-trinitrocyclohexadiene anion.

In polar solvents, some C-substituted dihydroaromatic compounds dissociate to a heteroaromatic cation and the substituent as an anion [2], displaying dual reactivity on aromatiza-

*For Communication 11, see [1].

Dnepropetrovsk Institute of Structural Engineering, Dnepropetrovsk 320600. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 80-84, January, 1988. Original article submitted May 11, 1986.

67